Model completion of varieties of co-Heyting algebras
نویسندگان
چکیده
It is known that exactly eight varieties of Heyting algebras have a modelcompletion, but no concrete axiomatisation of these model-completions were known by now except for the trivial variety (reduced to the one-point algebra) and the variety of Boolean algebras. For each of the six remaining varieties we introduce two axioms and show that 1) these axioms are satisfied by all the algebras in the model-completion, and 2) all the algebras in this variety satisfying these two axioms have a certain embedding property. For four of these six varieties (those which are locally finite) this actually provides a new proof of the existence of a model-completion, this time with an explicit and finite axiomatisation. MSC 2000: 06D20, 03C10
منابع مشابه
Macneille Completions of Heyting Algebras
In this note we provide a topological description of the MacNeille completion of a Heyting algebra similar to the description of the MacNeille completion of a Boolean algebra in terms of regular open sets of its Stone space. We also show that the only varieties of Heyting algebras that are closed under MacNeille completions are the trivial variety, the variety of all Boolean algebras, and the v...
متن کاملProfinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملOptimal natural dualities for varieties of Heyting algebras
The techniques of natural duality theory are applied to certain finitely generated varieties of Heyting algebras to obtain optimal dualities for these varieties, and thereby to address algebraic questions about them. In particular, a complete characterisation is given of the endodualisable finite subdirectly irreducible Heyting algebras. The procedures involved rely heavily on Priestley duality...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras I. Regularity
This paper is the first of a two part series. In this paper, we first prove that the variety of dually quasi-De Morgan Stone semi-Heyting algebras of level 1 satisfies the strongly blended $lor$-De Morgan law introduced in cite{Sa12}. Then, using this result and the results of cite{Sa12}, we prove our main result which gives an explicit description of simple algebras(=subdirectly irreducibles) ...
متن کامل